AI & NETWORK OBSERVABILITY

NETWORK OBSERVABILITY

Network observability uses diverse data sources to gain insights into network activity, aligning the internal network state with business goals and user experiences.

GOES BEYOND MONITORING

Incorporates automation, application dependencies, microservices, historical trends, and data analysis.

CHALLENGES WITH CURRENT TOOLS

Legacy Tools

Cost vs. Value

Limited Insights

LIMITED FUNCTIONALITY AND FRUSTRATIONS HINDER EFFECTIVENESS

Slow Polling

AI'S ROLE IN TRANSFORMING NETWORK OBSERVABILITY

How does AI help?

Improves Predictability: Analyzes data to predict issues before they occur.

- Automation: Conducts root cause analysis and prioritizes tasks.
- Actionable Insights: Analyzes relationships between apps and infrastructure for deeper understanding.

EVALUATING OBSERVABILITY PLATFORMS

Recommendations

- Conduct a **Proof of Value** (PoV) with a trusted advisor like KNZ.
- Clearly **define objectives** before implementation.
- Assess **functionality gaps** and justify **cost vs. value**.
 - Avoid: "Bolt-on" AI features that lack integration.

THE FUTURE OF AI-DRIVEN OBSERVABILITY

Innovations

Predictive capabilities **reduce** diagnostic **time**.

A deeper integration of IT operations for **strategic focus**.

End Goal: Effortlessly answer any network-related questions.

Ready to Transform Your Network Observability?

<u>Get Started Today</u>

